
MICROPROCESSORS AND
MICROCONTROLLERS

Dr. P. Lachi

Professor in ECE

LBRCE, Mylavaram

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

MICROPROCESSORS AND
MICROCONTROLLERS

Lachi Reddy

Professor in ECE

Mylavaram

1Department of Electronics and Communication Engineering, LBRCE

UNIT

ARM ARCHITECTURE &
PROGRAMMING MODEL

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

UNIT-III

ARM ARCHITECTURE &
PROGRAMMING MODEL

2Department of Electronics and Communication Engineering, LBRCE

TOPICS

 History

 ARM Features

 ARM Design Philosophy

 Registers

 Program Status Register

 Instruction Pipeline

 Interrupts and Vector Table

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

TOPICS - 1

Interrupts and Vector Table

3Department of Electronics and Communication Engineering, LBRCE

 ARM Processor Families

 Addressing Modes

 Instruction Set

 Data Processing Instructions

TOPICS

 Branch, Load - Store Instructions

 PSR Instructions and

 Conditional Instructions

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

Data Processing Instructions

TOPICS -2

Store Instructions

Department of Electronics and Communication Engineering, LBRCE 4

History

• Developed the first ARM Processor (Acorn RISC Machine) in 1985
at Acorn Computers Limited.

• Established a new company named Advanced RISC Machine
Limited and developed ARM6.

• Continuation of the architecture enhancements from the original
architecture

• The ARM processor core is key
bit embedded systems.

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

History

Developed the first ARM Processor (Acorn RISC Machine) in 1985
at Acorn Computers Limited.

Established a new company named Advanced RISC Machine
Limited and developed ARM6.

Continuation of the architecture enhancements from the original

key component of many successful 32-

Department of Electronics and Communication Engineering, LBRCE 5

ARM Features

• A large register file

• A load/store architecture

• Uniform and fixed length instruction field

• Simple addressing mode

• Arithmetic Logic Unit and barrel shifter

• Auto increment and decrement addressing mode

• Conditional execution of instructions

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

ARM Features

Uniform and fixed length instruction field

Arithmetic Logic Unit and barrel shifter

Auto increment and decrement addressing mode

Conditional execution of instructions

Department of Electronics and Communication Engineering, LBRCE 6

Architecture Basics

• ARM cores use a 32-bit, Load

• That means that the core cannot directly manipulate the memory.

• All data manipulation must be done by loading registers with
information located in memory, performing the data operation and information located in memory, performing the data operation and
then storing the value back to memory.

• There are 37 total registers in the processor.

• 37 Registers are split among seven different processor modes.

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

Architecture Basics

bit, Load-Store RISC architecture.

That means that the core cannot directly manipulate the memory.

All data manipulation must be done by loading registers with
information located in memory, performing the data operation and information located in memory, performing the data operation and
then storing the value back to memory.

There are 37 total registers in the processor.

37 Registers are split among seven different processor modes.

Department of Electronics and Communication Engineering, LBRCE 7

• The seven processor modes are used to run user tasks, an operating
system, and to efficiently handle exceptions such as interrupts.

• Some of the registers with in each mode are reserved for specific use by
the core, while most are available for general use.

Architecture Basics

• r13 is commonly used as the stack pointer (SP),

• r14 as a link register (LR)

• r15as a program counter (PC)

• The Current Program Status Register (CPSR), and the Saved Program
Status Register (SPSR).

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

The seven processor modes are used to run user tasks, an operating
system, and to efficiently handle exceptions such as interrupts.

Some of the registers with in each mode are reserved for specific use by
the core, while most are available for general use.

Architecture Basics -2

r13 is commonly used as the stack pointer (SP),

The Current Program Status Register (CPSR), and the Saved Program

Department of Electronics and Communication Engineering, LBRCE 8

RISC Design Philosophy

• The design philosophy aimed
- simple but powerful instructions
- single cycle execution at a
- intelligence in software rather than
- Provide greater flexibility on- Provide greater flexibility on

instructions.

• The RISC philosophy is implemented

• Instructions: Reduced no. of instructions

• Pipelines: Parallel execution by pipeline

• Registers: Large general purpose register set

• Load-Store Architecture: Separate Load and Store instructions

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

RISC Design Philosophy

aimed at delivering the following.
instructions

a high clock speed
rather than hardware

on reducing the complexity ofon reducing the complexity of

implemented with four major design rules:

Instructions: Reduced no. of instructions

Pipelines: Parallel execution by pipeline

Registers: Large general purpose register set

Store Architecture: Separate Load and Store instructions

Department of Electronics and Communication Engineering, LBRCE 9

ARM Design Philosophy

• There are a number of physical
processor design.

1. Small to reduce power consumption

2. High code density2. High code density

3. Price sensitive and use slow

4. Reduce the area of the die taken

5. Hardware debug technology

6. ARM core is not a pure RISC

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

ARM Design Philosophy

physical features that have driven the ARM

consumption and extend battery operation

slow and low-cost memory devices.

taken up by the embedded processor.

debug technology

RISC architecture

Department of Electronics and Communication Engineering, LBRCE 10

Registers

• ARM processors provide general
registers. Some additional registers
modes.

• In all ARM processors, the following
accessible in any processor mode:

• 13 general-purpose registers R0

• One Stack Pointer (SP).
 One Link Register (LR).
 One Program Counter (PC).
 One Application Program Status

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

Registers

general-purpose and special-purpose
registers are available in privileged execution

following registers are available and
mode:

R0-R12.

Status Register (APSR).

Department of Electronics and Communication Engineering, LBRCE 11

Registers

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

Registers

Department of Electronics and Communication Engineering, LBRCE 12

ARM Architecture

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

ARM Architecture

Department of Electronics and Communication Engineering, LBRCE 13

Current Program

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

Current Program Status Register

Department of Electronics and Communication Engineering, LBRCE 14

M[4:0] Mode Accessible registers
10000 User PC, R14 to R0,
10001 FIQ PC, R14_fiq to
10010 IRQ PC, R14_irq, R13_irq,

Processor Modes

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

10010 IRQ PC, R14_irq, R13_irq,
10011 Supervisor PC, R14_svc, R13_svc, R12
10111 Abort PC, R14_abt,
11011 Undefined PC, R14_und,
11111 System PC, R14 to R0,

registers
to R0, CPSR

to R8_fiq, R7 to R0, CPSR, SPSR_fiq
R13_irq, R12 to R0, CPSR, SPSR_irq

Processor Modes

Department of Electronics and Communication Engineering, LBRCE 15

R13_irq, R12 to R0, CPSR, SPSR_irq
R14_svc, R13_svc, R12 to R0, CPSR, SPSR_svc

 R13_abt, R12 to R0, CPSR, SPSR_abt
R14_und, R13_und, R12 to R0, CPSR, SPSR_und

to R0, CPSR

Instruction Pipeline

• The ARM uses a pipeline to increase the speed of the flow of
instructions to the processor.

• This allows several operations to take place

• A three-stage pipeline is used, so instructions are executed in three • A three-stage pipeline is used, so instructions are executed in three
stages:

• Fetch

• Decode

• Execute.

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

Instruction Pipeline

The ARM uses a pipeline to increase the speed of the flow of
instructions to the processor.

allows several operations to take place simultaneously.

stage pipeline is used, so instructions are executed in three stage pipeline is used, so instructions are executed in three

Department of Electronics and Communication Engineering, LBRCE 16

• During normal operation, while one instruction is being executed, its
successor is being decoded, and a third instruction is being fetched
from memory.

• The program counter points to the instruction being fetched rather
than to the instruction being executed

Instruction Pipeline

than to the instruction being executed

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

During normal operation, while one instruction is being executed, its
successor is being decoded, and a third instruction is being fetched

program counter points to the instruction being fetched rather
than to the instruction being executed

Instruction Pipeline

than to the instruction being executed

Department of Electronics and Communication Engineering, LBRCE 17

Instruction Pipeline

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

Instruction Pipeline

Department of Electronics and Communication Engineering, LBRCE 18

Interrupts and Vector Table

• When an exception or interrupt occurs, the processor sets the pc to
a specific memory address.

• The address is within a special address range called the vector
table.

• The entries in the vector table are instructions that branch to specific
routines designed to handle a particular exception or interrupt

• The memory map address 0x00000000 is reserved for the vector
table, a set of 32-bit words.

• On some processors the vector table can be optionally located at a
higher address in memory.

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

and Vector Table

When an exception or interrupt occurs, the processor sets the pc to

address is within a special address range called the vector

entries in the vector table are instructions that branch to specific
routines designed to handle a particular exception or interrupt.

The memory map address 0x00000000 is reserved for the vector

some processors the vector table can be optionally located at a

Department of Electronics and Communication Engineering, LBRCE 19

• Reset vector is the location of the first instruction executed by the
processor when power is applied. This instruction branches to the
initialization code.

• Undefined instruction vector
decode an instruction.

Interrupts and Vector Table

decode an instruction.

• Software interrupt vector is called when you execute a SWI
instruction. The SWI instruction is frequently used as the mechanism
to invoke an operating system routine

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

is the location of the first instruction executed by the
processor when power is applied. This instruction branches to the

Undefined instruction vector is used when the processor cannot

and Vector Table

is called when you execute a SWI
instruction. The SWI instruction is frequently used as the mechanism
to invoke an operating system routine

Department of Electronics and Communication Engineering, LBRCE 20

• Pre-fetch abort vector occurs when the processor attempts to fetch
an instruction from an address without the correct access
permissions. The actual abort occurs in the decode stage.

• Data abort vector is similar to a
instruction attempts to access data memory without the correct

Interrupts and Vector Table

instruction attempts to access data memory without the correct
access permissions.

• Interrupt request vector is used by external hardware to interrupt
the normal execution flow of the processor. It can only be raised if
IRQs are not masked in the CPSR.

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

abort vector occurs when the processor attempts to fetch
an instruction from an address without the correct access
permissions. The actual abort occurs in the decode stage.

abort vector is similar to a pre-fetch abort but is raised when an
instruction attempts to access data memory without the correct

and Vector Table

instruction attempts to access data memory without the correct

vector is used by external hardware to interrupt
the normal execution flow of the processor. It can only be raised if

CPSR.

Department of Electronics and Communication Engineering, LBRCE 21

Interrupts and Vector Table

The vectortable.

Exception/interrupt Shorthand
Reset RESET
Undefined instruction UNDEF

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

Undefined instruction UNDEF
Software interrupt SWI
Prefetch abort PABT
Data abort DABT
Reserved —
Interrupt request IRQ
Fast interrupt request FIQ

and Vector Table

Shorthand Address High address
RESET 0x00000000 0xffff0000
UNDEF 0x00000004 0xffff0004

Department of Electronics and Communication Engineering, LBRCE 22

UNDEF 0x00000004 0xffff0004
 0x00000008 0xffff0008

PABT 0x0000000c 0xffff000c
DABT 0x00000010 0xffff0010

0x00000014 0xffff0014
 0x00000018 0xffff0018
 0x0000001c 0xffff001c

ARM Processor Families

 ARM has designed a no. of processors grouped into different
families according to the core used.

 ARM7

 ARM9 ARM9

 ARM10

 ARM11

 Within each ARM family, no. of variations of memory management,
cache etc.

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

ARM Processor Families

ARM has designed a no. of processors grouped into different
families according to the core used.

Within each ARM family, no. of variations of memory management,

Department of Electronics and Communication Engineering, LBRCE 23

ARM Processor Families

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

ARM Processor Families

Department of Electronics and Communication Engineering, LBRCE 24

ARM7 Family

• The ARM7 core has a Von Neumann
data and instructions use the same bus.

• The core has a three-stage pipeline and executes the architecture
ARMv4T instruction set.

• The ARM7TDMI was the first of a new range of processors • The ARM7TDMI was the first of a new range of processors
introduced in 1995 by ARM.

• It is currently a very popular core and is used in many 32
embedded processors.

• The ARM7TDMI processor core has been licensed by many of the
top semiconductor companies around the world and is the
include the Thumb instruction set.

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

ARM7 Family

The ARM7 core has a Von Neumann–style architecture, where both
data and instructions use the same bus.

stage pipeline and executes the architecture

of a new range of processors of a new range of processors

It is currently a very popular core and is used in many 32-bit

The ARM7TDMI processor core has been licensed by many of the
top semiconductor companies around the world and is the first core to
include the Thumb instruction set.

Department of Electronics and Communication Engineering, LBRCE 25

ARM7 Family

• One significant variation in the ARM7 family is the ARM7TDMI

• The ARM7TDMI-S has the same operating characteristics as a
standard ARM7TDMI but is also synthesizable.

• ARM720T is the most flexible member of the ARM7 family because it
includes an MMU.includes an MMU.

• The presence of the MMU means the ARM720T is capable of
handling the Linux and Microsoft embedded platform operating
systems

• Another variation is the ARM7EJ

• ARM7EJ-S is quite different since it includes a

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

ARM7 Family

variation in the ARM7 family is the ARM7TDMI-S.

S has the same operating characteristics as a
standard ARM7TDMI but is also synthesizable.

member of the ARM7 family because it

The presence of the MMU means the ARM720T is capable of
handling the Linux and Microsoft embedded platform operating

Another variation is the ARM7EJ-S processor, also synthesizable.

S is quite different since it includes a five-stage pipeline.

Department of Electronics and Communication Engineering, LBRCE 26

• The ARM9 family was announced in 1997. Because of its
pipeline, the ARM9 processor can run at higher clock frequencies
than the ARM7 family.

• The extra stages improve the overall performance of the processor.

ARM9 Family

• The memory system has been redesigned to follow the Harvard
architecture, which separates the data D and instruction I buses.

• The first processor in the ARM9 family was the ARM920T, which
includes a separate D I cache and an MMU.

• ARM922T is a variation on the ARM920T but with half the D I cache
size.

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

The ARM9 family was announced in 1997. Because of its five-stage
pipeline, the ARM9 processor can run at higher clock frequencies

The extra stages improve the overall performance of the processor.

ARM9 Family

The memory system has been redesigned to follow the Harvard
architecture, which separates the data D and instruction I buses.

processor in the ARM9 family was the ARM920T, which
includes a separate D I cache and an MMU.

ARM922T is a variation on the ARM920T but with half the D I cache

Department of Electronics and Communication Engineering, LBRCE 27

ARM9 Family

• The ARM940T includes a smaller D I cache and an MPU.

• The ARM940T is designed for applications that do not require a
platform operating system.

• The next processors in the ARM9 family were based on the ARM9E• The next processors in the ARM9 family were based on the ARM9E
S core. This core is a synthesizable version of the ARM9 core.

• There are two variations: the ARM946E

• The latest core in the ARM9 product line is the ARM926EJ
synthesizable processor core, announced in 2000.

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

ARM9 Family

The ARM940T includes a smaller D I cache and an MPU.

The ARM940T is designed for applications that do not require a

The next processors in the ARM9 family were based on the ARM9E-The next processors in the ARM9 family were based on the ARM9E-
S core. This core is a synthesizable version of the ARM9 core.

There are two variations: the ARM946E-S and the ARM966E-S.

The latest core in the ARM9 product line is the ARM926EJ-S
synthesizable processor core, announced in 2000.

Department of Electronics and Communication Engineering, LBRCE 28

• The ARM10, announced in 1999, was designed for performance.

• It extends the ARM9 pipeline to six stages.

• It also supports an optional vector
adds a seventh stage to the ARM10 pipeline.

ARM10 Family

• The VFP significantly increases
compliant with the IEEE 754.1985

• The ARM1020E has separate 32K D I caches, optional vector
floating-point unit, and an MMU.

• The ARM1020E also has a dual 64
performance.

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

The ARM10, announced in 1999, was designed for performance.

It extends the ARM9 pipeline to six stages.

It also supports an optional vector floating-point (VFP) unit, which
adds a seventh stage to the ARM10 pipeline.

ARM10 Family

increases floating-point performance and is
compliant with the IEEE 754.1985 floating-point standard.

The ARM1020E has separate 32K D I caches, optional vector
point unit, and an MMU.

The ARM1020E also has a dual 64-bit bus interface for increased

Department of Electronics and Communication Engineering, LBRCE 29

• The ARM1136J-S, announced in 2003, was designed for high
performance and power- efficient applications.

• ARM1136J-S was the first processor implementation to execute
architecture ARMv6 instructions.

ARM11 Family

• It incorporates an eight-stage pipeline with separate load
arithmetic pipelines.

• Included in the ARMv6 instructions are single instruction multiple
data (SIMD) extensions for media processing,
to increase video processing performance.

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

S, announced in 2003, was designed for high
efficient applications.

processor implementation to execute
architecture ARMv6 instructions.

ARM11 Family

stage pipeline with separate load- store and

Included in the ARMv6 instructions are single instruction multiple
data (SIMD) extensions for media processing, specifically designed
to increase video processing performance.

Department of Electronics and Communication Engineering, LBRCE 30

Instruction Set

• All ARM instructions are 32 bits wide (except the
compressed 16-bit Thumb
on 4-byte boundaries in memory.

• The most notable features

• The load-store architecture;

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

• The load-store architecture;

• 3-address data processing
source operand registers and
independently specified);

• conditional execution of every

Instruction Set

All ARM instructions are 32 bits wide (except the
Thumb Instructions) and are aligned

memory.

ures of the ARM instruction set are:

architecture;

Department of Electronics and Communication Engineering, LBRCE 31

architecture;

processing instructions (that is, the two
and the result register are all

every instruction

Instruction Set

the inclusion of very powerful
instructions;

 the ability to perform a general
ALU operation in a single instruction
clock cycle;clock cycle;

 open instruction set extension through the coprocessor
instruction set, including adding
to the programmer's model;

 a very dense 16-bit compressed
instruction set in the Thumb architecture.

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

Instruction Set

powerful load and store multiple register

general shift operation and a general
instruction that executes in a single

open instruction set extension through the coprocessor
adding new registers and data types

compressed representation of the
architecture.

Department of Electronics and Communication Engineering, LBRCE 32

Instruction Format

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

Instruction Format

Department of Electronics and Communication Engineering, LBRCE 33

ARM assembly

• Fairly standard assembly language:

LDR r0,[r8]
ADD r4,r0,r1label ADD r4,r0,r1label

assembly language

language:

r0,[r8] ; a comment
r4,r0,r1

34

r4,r0,r1

ARM

• 32-bit word.

• Word can be divided into four

• ARM addresses can be 32

• Address refers to byte.
– Address 4 starts at byte 4.

• Can be configured at power
or bit-endian mode.

data types

four 8-bit bytes.

bits long.

35

power-up as either little-

Instruction

• The ARM processor is very easy
level

• In this part, we will

– Look at ARM instruction set– Look at ARM instruction set
programming at the user level

Instruction Set

easy to program at the assembly

set and assembly language

36

set and assembly language
level

Notable Features

• The load-store architecture

• 3-address data processing instructions

• Conditional execution of every instruction

• The inclusion of every powerful load and• The inclusion of every powerful load and
instructions

• Single-cycle execution of all instruction

• Open coprocessor instruction set extension

of ARM Instruction Set

instructions

instruction

and store multiple register

37

and store multiple register

instruction

extension

Conditional

• One of the ARM's most interesting features
conditionally executed

• In order to indicate the ARM's conditional
have to do is to append the appropriate

CMP
BEQ

r0, #5
BYPASS

ADD r1, r1, r0
SUB r1, r1, r2

BYPASS
…

Conditional Execution (1)

features is that each instruction is

conditional mode to the assembler, all you
appropriate condition to a mnemonic

CMP r0, #5
ADDNE r1, r1, r0
SUBNE r1, r1, r2

…

38

Conditional

• The conditional execution code is

; if ((a==b) && (c==d))
;
; a is in register r0
; b is in register r1; b is in register r1
; c is in register r2
; d is in register r3
; e is in register r4

CMP
CMPEQ
ADDEQ

r0, r1 r2, r3
r4, r4, #1

Conditional Execution (2)

is faster and smaller

e++;

39

The ARM Condition

• Every instruction is conditionally

• Each of the 16 values of the condition
to be executed or skipped according
and V flags in the CPSR

cond

and V flags in the CPSR

31 28 27

N: Negative Z: Zero C: Carry

Condition Code Field

executed

condition field causes the instruction
according to the values of the N, Z, C

40

0

V: oVerflow

ARM Condition
Opco de [3

:2 8]
Mnemo ni c Interpretati o n ex tens i o
n

0000 EQ Equal / equals zero
0001 NE Not equal
0010 CS/HS Carry set / unsigned higher
0011 CC/LO Carry clear / unsigned lower

0100 MI Minus / negative
0101 PL Plus / positive or zero

0110 VS Overflow0110 VS Overflow
0111 VC No overflow

1000 HI Unsigned higher
1001 LS Unsigned lower or same

1010 GE Signed greater than or equal
1011 LT Signed less than

1100 GT Signed greater than
1101 LE Signed less than or equal

1110 AL Always
1111 NV Never (do not use!)

Condition Codes
Status f l ag s tate fo r ex
ecuti o n

Z set
Z clear

higher or same C set
lower C clear

N set
N clear

V set

41

V set
V clear

C set and Z clear
C clear or Z set

equal N equals V
N is not equal to V

Z clear and N equals V
Z set or N is not equal to V

any
none

Condition

• In ARM state, all instructions are conditionally
CPSR condition codes and the instruction’s

• Fifteen different conditions may be used

• “Always” condition

– Default condition– Default condition

– May be omitted

• “Never” condition

– The sixteen (1111) is reserved, and

– May use this area for other purposes

Condition Field

conditionally executed according to the
instruction’s condition field

used

42

and must not be used

purposes in the future

ARM Instruction

• Data processing instructions

• Data transfer instructions

• Control flow instructions

• Writing simple assembly language programs

Instruction Set

43

language programs

ARM Instruction

• Data processing instructions

• Data transfer instructions

• Control flow instructions

• Writing simple assembly language programs

Instruction Set

instructions

44

language programs

Data processing

• Enable the programmer to perform arithmetic
logical operations on data values in registers

• The applied rules

– All operands are 32 bits wide and come from
the instruction itselfthe instruction itself

– The result, if there is one, is 32 bits wide

(An exception: long multiply instructions produce

– Each of the operand registers and the result
in the instruction

(This is, the ARM uses a ‘3-address’ format

processing instructions

arithmetic and
registers

from registers or are specified as literals in

45

and is placed in a register

produce a 64 bits result)

result register are independently specified

format for these instruction)

ADD r0, r1, r2

Simple Register

The semicolon here indicates that everythingThe semicolon here indicates that everything
should be ignored by the assembler

The values in the register may be considered
signed 2’s-complement values

; r0 := r1 + r2

Register Operands

everything to the right of it is a comment andeverything to the right of it is a comment and

considered to be unsigned integer or

46

Arithmetic

• These instructions perform binary arithmetic

• The carry-in, when used, is the current

ADD r0, r1, r2 r0 := r1 +ADD r0, r1, r2 r0 := r1 +

ADC r0, r1, r2 r0 := r1 +

SUB r0, r1, r2 r0 := r1 –

SBC r0, r1, r2 r0 := r1 –

RSB r0, r1, r2 r0 := r2 –

RSC r0, r1, r2 r0 := r2 –

Arithmetic Operations

arithmetic on two 32- bit operands

current value of the C bit in the CPSR

+ r2

47

+ r2

+ r2 + C

– r2

– r2 + C – 1

– r1

– r1 + C – 1

Bit-Wise Logical

• These instructions perform the specified
bit pair of the input operands

AND r0, r1, r2 r0 := r1 AND

r0[i] := r1[i] OPlogic r2[i] for

AND r0, r1, r2 r0 := r1 AND

ORR r0, r1, r2 r0 := r1 OR

EOR r0, r1, r2 r0 := r1 XOR

BIC r0, r1, r2 r0 := r1 AND

• BIC stands for ‘bit clear’
• Every ‘1’ in the second operand clears
operand

Logical Operations

specified boolean logic operation on each

AND r2

for i in [0..31]

AND r2

OR r2

XOR r2

AND (NOT r2)

48

the corresponding bit in the first

Example: BIC

• r1 = 0x11111111

• r2 = 0x01100101

• BIC r0, r1, r2• BIC r0, r1, r2

• r0 = 0x10011010

BIC Instruction

49

Register Movement

• These instructions ignore the first operand,
assembly language format, and simply
destination

MOV r0, r2 r0 := r2

MVN r0, r2 r0 := NOT

The ‘MVN’ mnemonic stands for ‘move negated

Movement Operations

operand, which is omitted from the
simply move the second operand to the

50

NOT r2

negated’

Comparison

• These instructions do not produce a result,
bits (N, Z, C, and V) in the CPSR according

CMP r1, r2 compare

CMN r1, r2 compare negated

TST r1, r2 bit test

TEQ r1, r2 test equal

Comparison Operations

result, but just set the condition code
according to the selected operation

set cc on r1 – r2

51

set cc on r1 + r2

set cc on r1 AND r2

set cc on r1 XOR r2

Immediate

• If we wish to add a constant to a register,
operand with an immediate value

ADD r3, r3, #1
AND r8, r7, #&ff

;
;

A constant

A hexadecimal by putting ‘&’ after the ‘#’

Immediate Operands

register, we can replace the second source

r3 := r3 + 1
r8 := r7[7:0]

constant preceded by ‘#’

52

Shifted Register

• These instructions allows the second
a shift operation before it is combined

ADD r3, r2, r1, LSL #3 ; r3

• They are still single ARM instructions,

• Most processors offer shift operations
combines them with a general ALU operation

Register Operands (1)

second register operand to be subject to
combined with the first operand

r3 := r2 + 8 * r1

53

executed in a single clock cycle

as separate instructions, but the ARM
operation in a single instruction

Shifted Register

LSL logical shift left by 0 to 31

ASL arithmetic shift left

31

XXXXX

31

LSL #5

Register Operands (2)

Fill the vacated bits at the LSB of the word
with zeros

A synonym for LSL

0

00000

0

#5
54

Shifted Register

LSR logical shift right by 0 to 31

31

00000

LSR #5

Register Operands (3)

Fill the vacated bits at the MSB of the word
with zeros

XXXXX

0

XXXXX

#5

55

Shifted Register

ASR arithmetic shift right by 0 to 31

0

31

0

00000 0

ASR #5 ;positive

Register Operands (4)

Fill the vacated bits at the MSB of the
word with zero (source operand is
positive)

0

;positive operand

56

Shifted Register

ASR arithmetic shift right by 0 to 31

1

31

1

11111 1

ASR #5 ;negative

Register Operands (5)

Fill the vacated bits at the MSB of the
word with one (source operand is
negative)

0

;negative operand

57

Shifted Register

ROR Rotate right by 0 to 31 The
used
word

31

ROR

Register Operands (6)

The bits which fall off the LSB of the word are
used to fill the vacated bits at the MSB of the
word

0

58

ROR #5

Shifted Register

RRX Rotate right extended by 1 place

31

C

RRX

C

C

Register Operands (7)

The vacated bit (bit 31) is filled with the
old value of the C flag and the operand is
shifted one place to the right

00

59

Shifted Register

• It is possible to use a register value to
operand should be shifted by

• Ex:

ADD r5, r5, r3, LSL r2 ; r5:=r5+r3*2^r2

• Only the bottom 8 bits of r2 are significant

Register Operands (8)

to specify the number of bits the second

r5:=r5+r3*2^r2

significant

60

Setting the Condition

• Any data processing instruction can set
and V) if the programmer wishes it to

• Ex: 64-bit addition

r0r1 ADDSr0r1

r2r3

r2r3

ADDS
ADC

Adding ‘S’ to
codes’

Condition Codes

set the condition codes (N, Z, C,

r2, r2, r0 ; 32-bit carry out->Cr2, r2, r0 ; 32-bit carry out->C
r3, r3, r1 ; C is added into

; high word

to the opcode, standing for ‘Set condition

61

Multiplies

• A special form of the data processing instruction
multiplication

• Some important differences

– Immediate second operands are not supported

– The result register must not be the same as

– If the ‘S’ bit is set, the C flag is meaningless

MUL r4, r3, r2 ; r4 := (r3

Multiplies (1)

instruction supports

supported

as the first source register

meaningless

(r3 x r2)[31:0]

62

Multiplies

• The multiply-accumulate instruction

MLA r4, r3, r2, r1 ; r4 := (r3

• In some cases, it is usually more efficient
processing instructions

• Ex: multiply r0 by 35

; move 35 to r1
MUL r3, r0, r1 ; r3 := r0 x 35

OR

ADD r0, r0, r0, LSL #2 ; r0’ :=

RSB r0, r0, r0, LSL #3 ; r0’’:=

Multiplies (2)

(r3 x r2 + r1)[31:0]

efficient to use a short series of data

:= 5 x r0

r0’’:= 7 x r0’

63

ARM Instruction

• Data processing instructions

• Data transfer instructions

• Control flow instructions

• Writing simple assembly language programs• Writing simple assembly language programs

Instruction Set

language programs

64

language programs

Addressing

• The ARM data transfer instructions
indirect addressing

– Based-plus-offset addressing

– Based-plus-index addressing– Based-plus-index addressing

LDR r0, [r1] ; r0
STR r0, [r1] ; mem

Register-indirect addressing

Addressing mode

instructions are all based around register-

r0 := mem32[r1]
mem32[r1] := r0

65

addressing

Data Transfer

• Move data between ARM registers

• Three basic forms of data transfer

– Single register load and store

– Multiple register load and store

– Single register swap instructions

Transfer Instructions

registers and memory

transfer instruction

instructions

66

store instructions

instructions

Single Register Load

• These instructions provide the most
data items between an ARM register

• The data item may be a byte, a 32

LDR r0, [r1] ; r0
STR r0, [r1] ; mem

Register-indirect addressing

Load / Store Instructions (1)

most flexible way to transfer single
register and memory

32-bit word, 16- bit half-word

r0 := mem32[r1]
mem32[r1] := r0

67

addressing

Single Register Load

LDR Load a word into register

STR Store a word in register into memory

LDRB Load a byte into register

STRB Store a byte in register into memory

LDRH Load a half-word into register

STRH Store a half-word in register into memory

LDRSB Load a signed byte into register

LDRSH Load a signed half-word into register

Load / Store Instructions (2)

Rd ←mem32[address]

Mem32[address] ←Rd

Rd ←mem8[address]

Mem8[address] ←Rd

68

Rd ←mem16[address]

Mem16[address] ←Rd

Rd ←signExtend(mem8[address])

Rd ←signExtend(mem16[address])

Base-plus-offset

• Pre-indexed addressing mode

– It allows one base register to be used
locations which are in the same area

LDR r0, [r1, #4] ; r0 :=

offset Addressing (1)

used to access a number of memory
area of memory

69

mem32[r1 + 4]

Base-plus-offset

• Auto-indexing (Preindex with writeback)

– No extra time

– The time and code space cost of the

LDR r0, [r1, #4]!

The exclamation “!” mark indicates that the
register after initiating the data transfer

Addressing (2)

writeback)

the extra instruction are avoided

; r0 := mem32[r1 + 4]
; r1 := r1 + 4

the instruction should update the base

70

Base-plus-offset

• Post-indexed addressing mode
– The exclamation “!” is not needed

LDR r0, [r1], #4

offset Addressing (3)

mode

; r0 := mem32[r1]
; r1 := r1 + 4

71

; r1 := r1 + 4

Application

ADR r1, table
LOOP LDR r0, [r1] ;

ADD r1, r1, #4 ;
;do some operation on r0
…

ADR r1, table
LOOP LDR r0, [r1], #4 ; r0

; r1
;do some operation on r0
…

Application

; r0 := mem32[r1]
; r1 := r1 + 4

r0
r1

:=
:=

mem32[r1]
r1 + 4

72

Multiple Register Load

• Enable large quantities of data

• They are used for procedure entry
workspace registers

LDMIA r1, {r0, r2, r5}

workspace registers

• Copy blocks of data around memory

The base register r1

Load / Store Instructions (1)

to be transferred more efficiently

entry and exit to save and restore

; r0 := mem32[r1]
; r2 := mem32[r1 +
; r5 := mem32[r1 +

73

memory

4]
8]

r1 should be word-aligned

Multiple Register Load

LDM Load multiple

STM Store multiple

Addressing mode Description Starting

IA
Increment After

Rn

IB
Increment
Before

Rn+4

DA
Decrement After

Rn-4*Rn+4

DB
Decrement
Before Rn-4*N

Addressing mode for multiple register load

Load / Store Instructions (2)

multiple registers

multiple registers

Starting address End address Rn!

74

Rn+4*N-4 Rn+4*N

Rn+4*N Rn+4*N

4*Rn+4 Rn Rn-4*N

4*N Rn-4 Rn-4*N

and store instructions

Example

LDMIA
OR

r0, {r1, r2, r3}

LDMIA r0, {r1-r3}

r1 := 10
r2 := 20
r3 := 30

r0 := 0x100

Example (1)

r3}

75

Example

LDMIA r0!, {r1, r2, r3}

r1 := 10
r2 := 20
r3 := 30

r0 := 0x10C

Example (2)

76

Example

LDMIB r0!, {r1, r2, r3}

r1 := 20
r2 := 30
r3 := 40

r0 := 0x10C

Example (3)

77

Example

LDMDA r0!, {r1, r2, r3}

r1 := 40
r2 := 50
r3 := 60

r0 := 0x108

Example (4)

78

Example

LDMDB r0!, {r1, r2, r3}

r1 := 30
r2 := 40
r3 := 50

r0 := 0x108

Example (5)

79

Application

Copy a block of memory

r9 begin address of source data
r10 begin address of target
r11 end address of source data

LOOP
LDMIA r9! , {r0-r7}
STMIA r10!, {r0-r7} CMP r9

, r11
BNE LOOP

Application

High address

r9

r11

Low address

r10

Copy

80

Application: Stack

• ARM use multiple load-store instructions

– POP: multiple load instructions

– PUSH: multiple store instructions

Stack Operations

instructions to operate stack

instructions

instructions

81

The Stack

• Stack grows up or grows down

– Ascending, ‘A’

– Descending, ‘D’

• Full stack, ‘F’: sp points to the last

• Empty stack, ‘E’: sp points to the
stack

Stack (1)

82

last used address in the stack

the first unused address in the

The Stack

The mapping between the stack and block
and store instructions

Stack (2)

block copy views of the multiple load

83

Single Register Swap

• Allow a value in a register to be exchanged
memory

• Effectively do both a load and a store
instructioninstruction

• They are little used in user-level

• Atomic operation

• Application

– Implement semaphores (multi
environment)

Swap Instructions (1)

exchanged with a value in

store operation in one

84

programs

(multi-threaded / multi-processor

Single Register Swap

SWP WORD exchange

tmp =

= Rm

Rd = tmp

SWP{B} Rd, Rm, [Rn]

SWPB Byte exchange

tmp =

Rm Rd

Swap Instructions (2)

mem32[Rn] mem32[Rn]

tmp

85

mem8[Rn] mem8[Rn] =

Rd = tmp

Example

SWP r0, r1,

Example

[r2]

86

Load an Address into

• The ADR (load address into register)
with a 32-bit address

• Example

– ADR r0,table– ADR r0,table

– Load the contents of register r0

into Register (1)

register) instruction to load a register

r0 with the 32-bit address "table"

87

Load an Address into

• ADR is a pseudo instruction

• Assembler will transfer pseudo instruction
appropriate normal instructions

• Assembler will transfer ADR into• Assembler will transfer ADR into
instruction to load the address into

into Register (2)

instruction into a sequence of

into a single ADD, or SUB

88

into a single ADD, or SUB
into a register.

ARM Instruction

• Data processing instructions

• Data transfer instructions

• Control flow instructions

• Writing simple assembly language programs• Writing simple assembly language programs

Instruction Set

language programs

89

language programs

Control Flow

• Determine which instructions get

LABEL

B
…
…
…

LABEL

LOOP
MOV
…
ADD

r0, #0

r0, r0, #1

;

;
CMP r0, #10 ;
BNE
…

LOOP ;
;

Flow Instructions

get executed next

;

;

initialize counter

increment loop counter
; compare with limit
;
;

repeat if not equal
else fall through

90

Branch Conditions

Branch Interpretati o n No rmal us es
B
BAL

Unconditional
Always

Always take
take this branch

B EQ Equal Comparison

B NE Not equal Comparison

B PL Plus Result positive
B MI Minus Result minus

B
B

CC
LO

Carry clear Lower Arithmetic operation
comparison

B
B

CS
HS

Carry set Higher or same Arithmetic operation
higher or same

B VC Overflow clear Signed integer
B VS Overflow set Signed integer operation;
B GT Greater than Signed integer

B GE Greater or equal Signed integer
B LT Less than Signed integer
B LE Less or equal Signed integer

B HI Higher Unsigned comparison
B LS Lower or same Unsigned comparison

Conditions

take this branch Always
branch

equal or zero result

not equal or non-zero result

positive or zero
minus or negative

operation did not give carry-out Unsigned
gave lower

operation gave carry-out Unsigned comparison gave
same

integer operation; no overflow occurred
integer operation; overflow occurred
integer comparison gave greater than

integer comparison gave greater or equal
integer comparison gave less than
integer comparison gave less than or equal

comparison gave higher
comparison gave lower or same

91

Branch

B PC=label

BL PC=label

LR=BL

BX PC=Rm

BLX PC=label,

PC=Rm

LR

Branch Instructions

PC=label

PC=label

LR=BL

92

PC=Rm & 0xfffffffe, T=Rm & 1

PC=label, T=1

PC=Rm & 0xfffffffe, T=Rm & 1

LR = BLX

Branch and Link Instructions

• BL instruction save the return address

;
;

BL subroutine
CMP r1, #5
MOVEQ r1, #0
……

subroutine
…
MOV pc, lr

Instructions (1)

address into r14 (lr)

; branch to subroutine
; return to here

93

; subroutine entry point

; return

Branch and Link

• Problem

– If a subroutine wants to call another
address, r14, will be overwritten by

• Solution• Solution

– Push r14 into a stack

– The subroutine will often also require
values in these registers can be
store multiple instruction

Link Instructions (2)

another subroutine, the original return
by the second BL instruction

94

require some work registers, the old
saved at the same time using a

Branch and Link

SUB1 ; branch to subroutineBL
…

SUB1
STMFD
BL

r13!,
SUB2

{r0-r2,r14}
BL SUB2
…
LDMFD r13!, {r0-r2, pc}

SUB2
…
MOV pc, r14 ; copy r14 into

Instructions (3)

subroutine SUB1

r2,r14} ; save work & link register

pc} ; restore work register and
; return

95

into r15 to return

Jump

• A programmer sometimes wants to call
choice depending on a value computed

Note: slow when the list is long, and
all subroutines are equally frequent

Jump Tables (1)

call one of a set of subroutines, the
computed by the program

BL
..

JUMPTAB

JUMPTAB

JUMPTAB
CMP r0, #0
BEQ SUB0
CMP r0, #1
BEQ SUB1
CMP r0, #2

BEQ
..

SUB2

96

Jump

• “DCD” directive instructs the assembler
to initialize it to the value of the expression

JUMPTABBL
..

JUMPTABJUMPTAB
ADR r1, SUBTAB CMP

r0, #SUBMAX
LDRLS pc, [r1, r0, LSL #2]

ERRORB
SUBTAB

DCD SUB0
DCD SUB1
DCD SUB2
..

Tables (2)

assembler to reserve a word of store and
expression to the right

97

Supervisor

• SWI: SoftWare Interrupt

• The supervisor calls are implemented

– They are probably different from one

– Most ARM systems implement a common– Most ARM systems implement a common
to any specific calls required by the

; This routine sends the character
; byte of r0 to the use display device

SWI SWI_WriteC ; output r0[7:0]

Supervisor Calls

in system software

one ARM system to another

common subset of calls in additioncommon subset of calls in addition
the particular application

character in the bottom
device

r0[7:0]

98

Processor Actions

• Save the address of the instruction

• Save the CPSR in SPSR_svc

• Enter supervisor mode

• Disable IRQs• Disable IRQs

• Set the PC to 0x8

Actions for SWI (1)

instruction after the SWI in r14_svc

99

Processor Actions

...
ADD r0, r1, r2 SWI
0x6
ADD r1, r2, r2
...

0x00 Reset

0x04 Undef instr.

0x08 SWI

0x0c Prefetch

0x10 Data abort

User Program Vector Table

... 0x10 Data abort

0x14 Reserved

0x18 IRQ

0x1c FIQ

Actions for SWI (2)

instr.

Prefetch abort

abort

SWI handler
...

Table
SWI handler

abort

Reserved

100

Processor Actions

...
ADD r0, r1, r2
SWI 0x6
ADD r1, r2, r2
...

0x00 Reset

0x04 Undef instr.

0x08 SWI

0x0c Prefetch

0x10 Data abort

User Program Vector Table

... 0x10 Data abort

0x14 Reserved

0x18 IRQ

0x1c FIQ

Actions for SWI (3)

instr.

Prefetch abort

abort

switch (rn) { case
0x1: …

case 0x6:
...
}

Table SWI handler

abort

Reserved

}

101

ARM Instruction

• Data processing instructions

• Data transfer instructions

• Control flow instructions

• Writing simple assembly language programs

Instruction Set

instructions

102

language programs

Writing Simple Assembly

(ARM ADS)
AREA HelloW, CODE, READONLY

SWI_WriteC
SWI_Exit

EQU
EQU

&0
&11

ENTRY
START ADR r1, TEXT
LOOP LDRB

CMP
r0, [r1], #1
r0, #0CMP r0, #0

SWINE SWI_WriteC BNE
LOOP

SWI SWI_Exit
TEXT "Hello World",&0a,&0d,0=

END

ENTRY: The first instruction to be executed within an application
directive. An application can contain only a single entry point.

Assembly Language Programs

AREA: chunks of data or code
that are manipulated by the
linker

EQU: give a symbolic name to a numeric
constant (*)

DCB: allocate one or more bytes of memory

World",&0a,&0d,0

application is marked by the ENTRY
point.

DCB: allocate one or more bytes of memory
and define initial runtime content of memory (=)

103

General Assembly

• The three sections are separated
character (a space or a tab)

label <whitespace> instruction <whitespace>

character (a space or a tab)

• Actual instructions never start in
be preceded by whitespace, even

• All three sections are optional

Form (ARM ADS)

separated by at least one whitespace

<whitespace> ;comment

104

in the first column, since they must
even if there is no label

GNU GAS Basic

.section .text

.global main

.type main,%function
main:

MOV r0, #100
ADD r0, r0, r0ADD r0, r0, r0
.end

Filename: test.s

Basic Format (1)

• Assemble the following code into a
section

• Similar to “AREA” in armasm

105

GNU GAS Basic

.section .text

.global main

.type main,%function
main:

MOV r0, #100
ADD r0, r0, r0ADD r0, r0, r0
.end

Filename: test.s

Basic Format (2)

• “.global” makes the symbol visible to
ld

• Similar to “EXPORT” in armasm

106

GNU ARM Basic

.section .text

.global main

.type main,%function
main:

MOV r0, #100
ADD r0, r0, r0ADD r0, r0, r0
.end

Filename: test.s

Basic Format (3)

• This sets the type of symbol name to
be either a function symbol or an object
symbol

• “.end” marks the end of the assembly
file

• Assembler does not process anything
in the file past the “.end” directive

107

GNU ARM Basic

.section .text

.global main

.type main,%function
main:

MOV r0, #100
ADD r0, r0, r0
.end.end

Filename: test.s

• Comments

• /* …your comments... */

• @ your comments (line comment)

Basic Format (4)

• LABEL

• armasm

108

Thumb Instruction

• Thumb addresses code density

– A compressed form of a subset of

• Thumb maps onto ARMs

– Dynamic decompression in an ARM– Dynamic decompression in an ARM

– Instructions execute as standard ARM
processor

• Thumb is not a complete architecture

• Thumb is fully supported by ARM

• Design for processor / compiler, not

Instruction Set

of the ARM instruction set

ARM instruction pipeline

109

ARM instruction pipeline

ARM instructions within the

architecture

development tools

not for programmer

Thumb-ARM Differences

• All Thumb instructions are

– ARM instructions are 32

• Most Thumb instructions
unconditionallyunconditionally

– All ARM instructions are executed
conditionally

Differences (1)

are 16-bits long

32-bits long

instructions are executed

110

executed

Thumb-ARM Differences

• Many Thumb data processing instructions
format (the destination register is
registers)

– ARM use 3-address format– ARM use 3-address format

• Thumb instruction are less regular
formats, as a result of the dense

Differences (2)

instructions use a 2-address
is the same as one of the source

111

regular than ARM instruction
dense encoding

Thumb Applications

• Thumb properties

– Thumb requires 70% space of the

– Thumb uses 40% more instructions

– With 32-bit memory, the ARM code
Thumb codeThumb code

– With 16-bit memory, the Thumb code
faster than the ARM code

– Thumb uses 30% less external memory

Applications

the ARM code

instructions than the ARM code

code is 40% faster than the

112

code is 45%

memory power than ARM code

ENDEND

15 November 2024 Department of Electronics and Communication Engineering, LBRCE

ENDEND

113Department of Electronics and Communication Engineering, LBRCE

